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SUMMARY

We propose an approximate method that can simulate the packing stage during the injection molding using
the penalty parameter method. In order to account for the compressibility effect, an update scheme based
on similarity between the slightly compressible and the penalty formulations is proposed. The method
allows for solving the entire injection molding process using a single algorithm with the penalty method
in spite of the transition from the incompressible regime during the filling stage into the compressible
regime for the packing stage. Several test cases have been presented to prove the validity of the method.
It has been shown that the accuracy of the proposed method is identical to that of the mixed method.
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1. INTRODUCTION

Injection molding for plastic processing consists of three distinctive stages, namely, the filling,
the packing and the cooling stages. In the filling stage, polymer melt is introduced into the mold.
Once the mold is completely filled, packing stage ensues during which additional polymer melt
is supplied to compensate the shrinkage during cooling. As the melt has to be pressed into the
mold with a fixed volume, applied pressure during packing is very high and the flow is inherently
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compressible. After packing, the mold is cooled down to a preset temperature and the polymer
melt is solidified.

Integrated simulation of the injection molding process, involving the filling, packing and cooling
stages, is already full fledged. Filling and packing stages in injection molding process have been
analyzed based on the generalized Hele–Shaw (GHS) model for relatively thin parts [1]. However,
three-dimensional phenomena such as the fountain flow and the flow instability cannot be simulated
with such approximated models [2]. In order to consider such out-of-plane phenomena, any model
with approximation in thickness direction as in the GHS model should not be employed. Instead, a
set of the governing equations which is composed of the conservation of mass, momentum, energy
and corresponding constitutive equations should be solved simultaneously considering through-
thickness variation of all the variables. Especially, the Navier–Stokes equations with compressibility
effect allow simulation of the packing stage during injection molding.

Three-dimensional simulations of the injection molding are gaining more popularity in the
design and troubleshooting of the process as the parts are becoming complicated and the products
in the design stage are modeled using three-dimensional tools. Nowadays, several commercial
computer-aided engineering packages for injection molding simulation provide such capability [3].
However, the computational time is a major bottleneck in the three-dimensional simulation.

It is well known that the penalty method is advantageous in reducing the computational time for
analyzing many fluid flow problems [4]. In the injection molding process, even though the filling
stage can be handled by incompressible flow assumption, compressibility effect should be included
in the analysis of the packing stage. As a result, it has been a common practice to solve different
governing equations and hence to employ separate numerical codes for the filling and packing
stages. The penalty method basically assumes the flow to be incompressible by choosing a very
large value of the penalty parameter. Therefore, the penalty method is not widely employed for
simulating the compressible flows such as those encountered during the packing stage of injection
molding.

This study is motivated by the apparent similarity between the slightly compressible formula-
tion and the penalty formulation [5]. Hesthaven [6] has provided a mathematical foundation for
solving the compressible Navier–Stokes equations using the penalty method. Kellogg and Liu [7]
have proposed a mathematical formulation for compressible Stokes problem based on the penalty
method. Utilizing these formulations, this work presents and implements a numerical method that
handles the filling and packing stages of the injection molding process in the same manner. The
proposed method presents a scheme that updates the penalty parameter in accordance with the
compression of the fluid (molten thermoplastic resin). In order to demonstrate the feasibility of
the proposed scheme, we have analyzed the injection molding process from the filling to the
packing for two-dimensional and three-dimensional cases. Validity of the method has been exam-
ined through comparisons with the results by the mixed method. We have also shown that the
current method can significantly reduce the computation time for the grid systems with a similar
number of nodes.

2. GOVERNING EQUATIONS

As previously noted, it is essential to consider the effect of melt compressibility for simulation
of the packing stage in injection molding [8]. The equation of mass conservation in the packing
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stage is different from that of incompressible polymer flow encountered during the filling stage.
For convenience, isothermal condition is assumed in this study.

2.1. Momentum equation for packing stage

Consider the velocity vector u and pressure p. For the given time t and density �, momentum
conservation requires [9]

�

[
�ui
�t

+uk
�ui
�xk

]
=−p,i + ��i j

�x j
(1)

Body force can be neglected since the injection pressure is usually very high. Here, for a given
temperature T , the shear stress tensor �i j is expressed as

�i j =2�(I2,T )di j (2)

where the rate-of-deformation tensor di j and the second invariant of rate-of-deformation tensor I2
are defined as follows:

di j = 1

2

(
�ui
�x j

+ �u j

�xi

)
(3)

I2=(2di j d ji )
1/2 (4)

The Cross-WLF model for viscosity is adopted to describe the non-Newtonian behavior of polymer
melt [10]. For the given temperature T , the corresponding viscosity function �(I2,T ) takes the
following form [10]:

�(I2,T )= �0(T )

1+(�0(T ) · I2/�)1−n
(5)

where �0=D1 exp[−A1(T −D2)/(A2+T −D2)] for T�D2 and T<D2 for �0=∞. Here, D1,
D2, A1, A2 and � are constant values that should be determined from experimental measurements
for a specific polymer. The values of constants for polymethylmethacrylate are listed in Table II.

2.2. Mass conservation equation for packing stage

Conservation of mass can be expressed as [9]
��

�t
+(∇ ·�u)=0 (6)

Expanding the second term in the above equation gives

��

�t
+�(∇ ·u)+u·∇�=0 (7)

Density of polymer melt � is a function of pressure p and temperature T . The derivatives can be
estimated as
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Using the above equalities, the continuity equation can be rewritten as

1
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+ 1
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)
+∇ ·u=0 (9)

where � is the isothermal compressibility (≡(1/�)��/�p) and � is the coefficient of thermal
expansion (≡−(1/�)��/�T ). As a result, the equation of mass conservation can be written as

�

(
�p
�t

+u·∇ p

)
−�

(
�T
�t

+u·∇T

)
+∇ ·u=0 (10)

In this analysis, two major assumptions have been made [11]. First, during the packing stage,
the flow is assumed to be isothermal since temperature change of the polymer melt in this stage is
negligible. Therefore, terms involving temperature change such as �T/�t and u·∇T can be ignored
without inducing significant error. Second, because the mold is volumetrically filled during the
packing stage, application of packing pressure tends to pressurize the melt hydrostatically. Even
though the pressure itself is very high in the packing stage, pressure gradient is much lower than
that in the filling stage. With small value of pressure gradient, the velocity during the packing
stage is also small. Therefore, u·∇ p is assumed to be negligible during the packing stage.

The above-mentioned assumptions allow the mass conservation equation (Equation (10)) to be
expressed in a simpler form as follows:

�p
�t

+ 1

�
∇ ·u=0 (11)

Equation (11) is referred to as the ‘slightly compressible’ formulation, where � ranges between
10−9 and 10−10/Pa for most liquids. It is noted that the isothermal compressibility � can be
obtained from the equation of state.

2.3. Equation of state for packing stage

The Tait equation [11] is employed to calculate the specific volume of polymer melt v as a function
of temperature and pressure. In the present study, the following equation is used to obtain the
specific volume [12]:

v(T, p)=v0(T )

{
1−C ln

(
1+ p

B(T )

)}
+vg(T, p) (12)

where v0(T )=b1+b2T , B(T )=b3 exp[−b4T ], vg(T, p)=b7 exp[b8T −b9 p] and T =T −b5.
Values of constants for the above equations are listed in Table III.

3. PENALTY METHOD FOR SLIGHTLY COMPRESSIBLE FLOW

3.1. Mixed and penalty methods for FEM formulation

Many investigators have shown that the finite element method (FEM) can be successfully applied to
the problems of compressible or incompressible fluid flow [9]. The FEMs for solving the equations
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associated with polymer processing can be categorized into three groups, depending on the way
velocity and pressure are treated [13]. Those three methods are the mixed (velocity–pressure-
integrated) method [14–16], the penalty method [17] and the segregated velocity–pressure method
[9, 18, 19].

Several numerical studies have been conducted using the three approaches in various fluid flow
problems [20–23]. Among these methods, the penalty method is sometimes preferred over the
other methods especially for incompressible problems since the computational cost can be saved
[4, 9]. Because of decrease in the number of variables appearing in the discretized equations, the
penalty method requires less memory and computational time than the mixed method due to the
decoupling of velocity and pressure [4].

The finite element formulation and the solution procedure are explained in this section briefly.
Rewriting (Equation (1)) in a vector form, we have

�
�u
�t

+�(u·∇)u=−∇ p+∇(�∇u+�∇Tu) (13)

After applying the weighted residual method to the above momentum equation and the continuity
equation, the following expressions are obtained:∫

�
�

�u
�t

·wd�+
∫

�
�(u·∇)u·wd�+

∫
�

(�∇u∇w− p(∇ ·w))d�=
∫

�
(�·n)d� (14)

−
∫

�
(∇ ·u) ·qd�=0 (15)

The above weak forms can be discretized by applying the Galerkin method as follows:

M
(
u−up

�t

)
+Cu+Au+Qp=B (16)

QTu=0 (17)

where M,C,A,Q, QT and B are the mass matrix, the convection matrix, the viscous matrix, the
pressure matrix, the divergence matrix and the body force matrix, respectively. p and �t denote
the values from the previous time step and the time increment, respectively.

In the mixed method, the velocity and pressure are simultaneously obtained, whereas in the
penalty method the pressure should be estimated by post-processing the velocity. The pressure is
coupled with the velocity while updating pressure field does not affect the velocity field in the
penalty method. In the mixed method, the solution is obtained by solving the following system of
linear equations at each time step: [

K Q

QT 0

][
u

p

]
=

[
F

0

]
(18)

where p is the pressure vector at nodal points, K and F are given as [9]
K=M/�t+C+A (19)

F=Mup/�t+B (20)
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The segregated method such as the fractional step method is not treated here since it can be
considered an approximation of the mixed method for computational efficiency.

The penalty method approximates the momentum equation by eliminating the pressure from it.
It should be noted that the continuity equation is approximately satisfied in the penalty method.
Here, pressure is obtained using

p+�∇ ·u =0 (21)

where � is the penalty parameter and u is the velocity vector.
In the penalty method, the incompressibility constraint is additionally imposed in the momentum

equation by introducing the penalty term [4, 17]. Replacing p in Equation (14) with −�∇ ·u using
Equation (21) gives

∫
�

�
�u
�t

·wd�+
∫

�
�(u·∇)u·wd�+

∫
�

(�∇u∇w+�(∇ ·u)(∇ ·w))d�=
∫

�
(�·n)d� (22)

Applying the Galerkin method, we have the following expression:

M
(
u−up

�t

)
+Cu+Au+�K′u=B (23)

where K′ is the penalty matrix that corresponds to the fourth term on the left-hand side of
Equation (22).

The solution for each time step is obtained by solving the following system of linear equations [9]:
[K+�K′][u]=[F] (24)

where K and F have the same forms as in Equations (19) and (20). The matrix K′ should
be integrated with a lower integration order than K to ensure the convergence of the solution
[9]. This results in discontinuity in pressure between elements. It should be emphasized that
Equation (24) can be obtained for a Galerkin approximation of the discontinuous pressure fields
with the continuous velocity fields [24].

Theoretically, a larger � forces the mass conservation (∇ ·u=0) satisfied more strictly. However,
a larger � also causes numerical difficulties such as the locking problem in elasticity analysis [9].
On the other hand, a small � value can induce mass loss. In practice, a couple of tips are found
in the literatures. It is known that the penalty parameter should be selected to be two to four
orders of magnitude larger than the terms in K [25]. The magnitude of � is O(10n/2) where n
is the number of bits in a word in the computer [26]. Moreover, there is another approach that
the penalty parameter should be (107–108)� [27]. This work suggests the method of selecting the
penalty parameter.

It can be observed that the continuity equation of slightly compressible formulation Equation (11)
is analogous to the pressure equation (21) in the penalty formulation. Comparing these two
expressions, we can postulate that the compressibility effect during the packing stage can be
taken into account by appropriately adjusting the value of the penalty parameter. By doing this,
incompressible filling stage and the compressible packing stage can be analyzed using the identical
formulation. This study proposes a new penalty method that mimics the slightly compressible
formulation by properly controlling the penalty parameter.
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3.2. Penalty formulation for slightly compressible flow

Substituting Equation (14) into Equation (11), we have

��

�t
∇ ·u− 1

�
∇ ·u+�

�
�t

∇ ·u=0 (25)

Consider the penalty parameter to be updated every time step as follows:

�n+1=�n+(��)n (26)

Then, Equation (17) can be discretized to give the increment as

(��)n = �t

�
−�n

(∇ ·u)n+1−(∇ ·u)n

(∇ ·u)n+1
for n�1 (27)

The penalty parameter is updated at every time step using the above equation by adding the
increment to the old penalty parameter �n . In this study, the initial value of the penalty parameter
�0 is set as 0 for convenience. In this work, the penalty parameter � is evaluated at the points for
reduced integration. As a result, with bilinear quadrilateral elements with reduced integration for
K′ (Q1/Q0), � is constant over each element at a given time.

During the filling stage, a large value of penalty parameter is imposed due to the incompressibility
of the polymer melt. During the packing stage, however, the penalty parameter should be varied
to consider the compressibility effect. The algorithm proposed above allows varying the penalty
parameter according to the compressibility. Thus, a single computer code developed based on the
penalty method enables seamless analysis of both the filling and the packing stages.

4. NUMERICAL TESTS

4.1. Implementation of the computer code

We have solved verification problems to compare the results of the mixed method and the penalty
method during the packing stage. For comparison, we have developed two separate computer codes
each using the penalty method and the mixed method to analyze the slightly compressible flow
during the packing stage. Fully implicit time integration scheme has been employed. Detailed
formulation for both the penalty and the mixed methods can be found elsewhere [9]. The penalty
method is equipped with the penalty parameter update scheme as outlined above, which allows
simulating the filling and packing in the same framework. After discretization of the governing
equations, resulting system of algebraic equations is solved by the frontal method [28].

4.2. Comparison with the mixed method in a two-dimensional case

Consider a rectangular domain of 1m×0.1m and the structured mesh as shown in Figure 1. All
the material properties used for the numerical tests are specified in Tables I–III [29]. Especially,
the density and compressibility as functions of pressure are shown in Figure 2. Temperature is
kept uniform and packing pressure is assumed to increase at a constant rate.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:139–155
DOI: 10.1002/fld



146 S. Y. KANG, S. K. KIM AND W. I. LEE
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Figure 1. Geometry and mesh for test cases.

Table I. Thermophysical properties of the resin.

� (m/mK) 6.3×10−5

Cp (J/kgK) 2.4×103

ki j (W/mK) 0.177
� (kg/m3)∗ 1.007×103

∗A representative �-value.

Table II. Constants for the Cross-WLF equation (Equation (5)).

n 0.3894
A1 40.50
A2 (K) 51.60
D1 (Pa s) 1.5168×1016

D2 (K) 343.15
� (Pa) 4.0405×104

Table III. Values of constants required for the Tait equation (Equation (12)).

For T>Tg For T�Tg

Tg (K) 408.12 408.12
b1 (m3/kg) 1.0100×10−3 1.0100×10−3

b2 (m3/kgK) 6.4677×10−7 2.0123×10−7

b3 (Pa) 1.9109×108 2.9835×108

b4 (K−1) 4.7537×10−3 2.0032×10−3

b5 (K) 408.12 408.12
b6 (K/Pa) 3.8307×10−7 3.8307×10−7

b7 (m3/kg) 0.0 0.0
b8 (K−1) 0.0 0.0
b9 (Pa−1) 0.0 0.0
C 0.0894×100

Due to the compressibility of polymer melt, mass should be added during the packing stage.
The amount of total added mass ma over the packing time can be obtained by simply integrating
the mass flow into the control volume over the packing time as

ma(t)=
∫ t

t0
ṁ d� (28)
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Figure 2. Density and compressibility as functions of pressure.

where t0 is the initial time of the packing stage. Integrating Equation (6) over the control volume
gives ∫

CV

(
��

�t
+∇ ·�u

)
dV =

∫
CV

��
�p
�t

dV +
∫
CS

�u·ndS=0 (29)

where CV and CS stands for the control volume and surface, respectively. The vector n is normal
to CS. Then, the mass flow rate ṁ into CS becomes

ṁ=−
∫
CV

�u·ndS=
∫
CV

��
�p
�t

dV (30)

The same result is obtained using the definition of the isothermal compressibility � as follows:

ṁ=
∫
CV

��

�t
dV =

∫
CV

��
�p
�t

dV (31)

The horizontal velocity component and the amount of added mass are compared for the slightly
compressible and penalty methods. Figure 3(a) and (b) shows the velocity profiles at t=5s for the
pressure increase rate of 10MPa/s. As can be seen, velocity profiles coincide very well with each
other. Figure 4(a) and (b) shows pressure profiles for the same case. The observed discrepancy is
negligible in this comparison.

Added masses for both methods are compared in Figure 5(a) and (b). Overall, there is no
noticeable difference in the amounts of added mass. In the initial stage of packing, however, the
penalty method and the mixed method exhibit slightly different behaviors as shown in the figures.
These figures also show that both solutions converge to each other as time progresses despite the
presence of initial discrepancy. The reason for the initial discrepancy may be attributed to the
inaccuracy in selecting initial value of the penalty parameter.
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Figure 3. Comparison of the velocity component, u, at t=5s obtained by the mixed (slightly
compressible) and penalty methods for gate pressure increase rate of 10MPa/s: (a) result by the

mixed method and (b) result by the penalty method.

P: 3.1995E+07 3.1997E+07 3.1999E+07 3.2001E+07 3.2003E+07 3.2005E+07

(a)

(Pa)

(b)

Figure 4. Comparison of the pressure component, p, at t=5s obtained by the mixed (slightly
compressible) and penalty methods for gate pressure increase rate of 10MPa/s: (a) result by the

mixed method and (b) result by the penalty method.
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Figure 5. Comparison of the amount of added mass obtained by the mixed (slightly compressible)
and penalty methods for gate pressure increase rate of 10MPa/s: (a) result by the mixed method

and (b) result by the penalty method.
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4.3. Implication of change in �

In the proposed scheme, the penalty parameter � is related to inherent compressibility of the
material in the domain. However, the value itself does not bear any strict meaning. On the other
hand, its variation �� is greatly affected by the compressibility � as is evident from Equation (27).
Consider a situation where the gate pressure is first linearly increased at t=0.002s. After 0.002 s
of increase, pressure is made to decrease at the same rate as shown in Figure 6. This figure shows
the change in � as a function of the gate pressure. Increase of the gate pressure renders the polymer
melt compressed and thus � is significantly decreased at 0.002 s. After that, as the compressibility
change becomes smaller, � increases. When the gate pressure starts to decrease at 0.004 s, � climbs
up to a certain level to reflect the decreased change in compressibility.

4.4. Initial guess of �

We have tested the proposed algorithm with different initial guesses of the penalty parameter �.
Figure 7(a)–(d) shows the change of � with the pressure change at the gate. Initially, the pressure
is maintained at 0 Pa (gauge). At 0.01 s, pressure goes up at a rate of 500MPa/s. As shown in
Figure 6, before the pressure increase is started, � goes up at a constant rate of �t/�. At the point
when the pressure starts to ramp up (t=0.01s), � value dropped dramatically to accommodate the
compressibility change of polymer melt. Figure 7(a)–(d) shows an identical behavior of � regardless
of the initial guess, �0. From these results, the proposed method is shown to be insensitive to the
selection of initial guess. However, based on Equation (28) and the result shown in Figure 6(d),
�t/� is recommended as the initial guess of �. Figure 8(a)–(d) also demonstrates insensitivity of
the results to the initial guess. In this case, pressure is changed in a stepwise manner—pressure
is abruptly raised from 20 to 40MPa at 0.01 s. It is observed that � abruptly decreases at the
point of step increase in the pressure but quickly recovered back to the level before the pressure
jump. The imposition of �t/� as the initial guess also works well in this case as can be seen from
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(a)

(c) (d)

(b)

Figure 7. Change of � when the gate pressure is ramped up at a rate of 500MPa/s from 0.01 s for different
initial values of the penalty parameter: (a) �0=1.E6; (b) �0=1.E7; (c) �0=1.E8; and (d) �0=�t/�.

Figure 8(d). It is found that � spontaneously varies along with the inherent compressibility even
with rough initial guess.

4.5. Seamless simulation

We have built up a computer code that can seamlessly simulate from mold filling to packing. To
realize the free-surface flow, the volume of fluid method with fixed grid system is employed [30].
Further details of the filling simulation are not delineated here. Figure 9(a)–(d) shows the flow
front and u for the corresponding filling phases. During the filling process, the inlet velocity is set
constant until the entire domain is filled. Figure 9(a) and (b) shows the results when the filling is
50 and 97% completed. Because of the constant inlet flow rate they show a similar pattern near
the flow front. After the cavity is completely filled, the magnitude of the velocity over the domain
dramatically decreases as shown in Figure 9(c). During the postfilling phase, the magnitude is very
small as shown in Figure 9(d).
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Figure 8. Change of � when the gate pressure is stepped up from 20 to 40MPa at 0.01 s
for different initial values of the penalty parameter: (a) �0=1.0×106; (b) �0=1.0×107;

(c) �0=1.0×108; and (d) �0=�t/�.

4.6. Application to three-dimensional case

We have conducted a three-dimensional packing analysis with the proposed method. Figure 10
shows the packing pressure history for the three-dimensional test case. Results are presented at
20 s after packing. The velocity in the x-direction and pressure are shown in Figure 11(a) and
(b), respectively. Arrows in Figure 11(a) show the region where the packing pressure is applied.
Other boundaries are all impermeable walls. Because the lower part of the inlet face is pressurized,
asymmetry in pressure profile is observed in Figure 11(b). As can be seen, the proposed algorithm
works fine for this three-dimensional problem.

5. CONCLUSION

In this work, an algorithm employing the penalty method for slightly compressible flows has been
proposed. An approximate method that can analyze compressible packing stage during injection
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Figure 9. u Contour and velocity vectors during filling of two-dimensional cavity: (a) at 50%
filling, 1.494m/s; (b) at 97% filling, umax=1.494m/s; (c) at 100% filling, 1.403m/s; and

(d) at 5 s after 100% filling, umax=0.0096m/s.
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Figure 10. Pressure as a function of time for the three-dimensional test case.

molding is formulated. The method allows solving the entire injection molding process using
a single algorithm with the penalty method in spite of the transition from the incompressible
regime during the filling stage into compressible regime for the packing stage. We have applied
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Figure 11. Results for the three-dimensional case at 20 s: (a) u iso-contour surface and (b) pressure contour.

the proposed method to the simulations of the packing stage with different configurations. It has
been shown that the accuracy of the proposed method is identical to the mixed method.

NOMENCLATURE

Ai (for i=1,2) constants of Cross-WLF model
bi (for i=1,2, . . . ,9) constants of Tait equation
B(T ) intermediate function in the Tait equation (=b3 exp[−b4T ])
Cp specific heat capacity
CS control surface
CV control volume
di j (for i, j =1,2,3) rate of deformation tensor
Di (for i=1,2) constants of Cross-WLF model
F force vector
I2 second invariant of di j
ki j (for i, j =1,2,3) thermal conductivity
K stiffness matrix
K′ penalty matrix
ma added mass
ṁ mass flow rate
p pressure
p pressure vector
p,i derivative of pressure in xi
Q pressure gradient matrix
QT divergence matrix
S surface area
t time
t0 initial time of the packing stage
T temperature
T corrected temperature (=T −b5) for the Tait equation
u velocity vector
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ui (for i=1,2,3) velocity in the xi -direction
v specific volume
v0(T ) intermediate specific volume in the Tait equation (=b1+b2T )

vg(T, p) intermediate specific volume in the Tait equation
(=b7 exp[b8T −b9 p])

V volume
xi (for i=1,2,3) position variable

Greek symbols

� coefficient of thermal expansion
� viscosity
�0 zero shear viscosity
� compression work
� isothermal compressibility
� penalty parameter
�0 initial value of the penalty parameter
�n nth penalty parameter value
�n+1 (n+1)th penalty parameter value
� density
� constant of Cross-WLF model
�i j deviatoric stress tensor
� viscous dissipation
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